This chapter illustrates the use of hysteresis control techniques applied to multilevel inverters. First, a general classification of different methods applied to control multilevel inverters is presented from three main points of view: that of the switching frequency (fundamental frequency and high frequency), the related application (grid-tie and stand-alone), and the kind of control they use (linear and nonlinear). Into this frame, the hysteresis-based control methods are presented, with an overview of the existing literature. Thus both hysteresis current control (HCC) and hysteresis voltage control (HVC) are considered to illustrate the use of the technique in grid-connected and stand-alone applications, respectively. In the case of HCC, the three most relevant techniques are detailed: multiband (MB) HCC, multioffset-band (MOB) HCC, and time-based (TB) HCC. Similarly, for HVC, two methods are explained: multiband (MB) HVC and hysteresis voltage regulation (HVR). Finally, based on the overview of the existing techniques, an alternative HVC method is proposed for the first time in this chapter. This control can be classified as a low-frequency adaptive hysteresis band technique suitable for stand-alone applications. The theoretical fundamentals of the control are provided, using the particular topology of a transformer-based cascade multilevel inverter selected as a case study. Validation of the technique’s effectiveness is supported using simulation results in which the control ensures the output voltage shape by changing the number of output levels from 27 to 35 and simultaneously adapting the width of the hysteresis band according to the input voltage and load conditions.
This work describes in detail a computational tool designed to study performance indicators of a four-stage transformer-based single-phase cascaded multilevel inverter. The proposed system integrates simulation, on-line measurement, control and signal processing providing automating testing functionality to optimize the performance of the inverter with base on indicators such as Total Harmonic Distortion (THD), partial and global efficiency and power balance between the stages. The computational component of the tool was developed in LabVIEW providing not only didactic interactivity with the user through the Human-Machine Interface (HMI) but also a reliable interconnection with the power converter and the instruments of the experimental setup. The hardware component was developed integrating the power converter prototype, an acquisition card and electronic circuits providing measurement, conditioning, digital control and gate driving functions. Experimental results obtained from automatic tests are presented showing potentiality of the tool to support research activities related with this type of power converters.